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ABSTRACT: The Hookean dumbbell model of a macro-
molecule predicts non-uniform density and pressure fields
surrounding a sphere buoyant in a dilute polymer solution
when the size of the sphere is of the same order of magni-
tude as the size of the macromolecules. Using this predic-
tion, the root mean square separation distance of a
suspension of spheres buoyant within a dilute polymer so-
lution is found to be inversely proportional to both the
square of the radius of a sphere and the density of the
polymer solution. The phase space distribution function
for an ensemble of spheres immersed at equilibrium
within a dilute polymer solution is found and used to

define the magnitude of the ensemble average peculiar
acceleration of the spheres. The peculiar acceleration
results from changes in direction of the peculiar velocity.
It is found to be directly proportional to the temperature,
polymer density, and square of the radius of a sphere and
inversely proportional to the mass of a sphere. The self-
diffusivity of the particles varies directly with the square
root of the temperature. VVC 2009 Wiley Periodicals, Inc. J Appl
Polym Sci 114: 2992–2996, 2009
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INTRODUCTION

Colloidal suspensions are ubiquitous in many engi-
neering technologies. The need to understand their
stability and dynamic properties motivates both the
development of theory and the experimental techni-
ques required to probe distances on the order of the
size of molecules. For colloidal dispersions within
polymer solutions, the interaction between macro-
molecule and colloid particle enriches the complex-
ity of the suspension. In a previous study, Grisafi
(1990), the Hookean dumbbell model of a macromol-
ecule indicated that within the interfacial region of a
sphere buoyant in a dilute polymer solution, whose
size is on the same order of magnitude as that of the
macromolecules, the density and pressure fields are
non-uniform even at equilibrium.1 The present study
addresses the consequences of this phenomenon
upon the equilibrium properties of a colloidal dis-
persion of spheres in a dilute polymer solution.

Most often in the analysis of diffusion of large
spherical particles or molecules within liquids use is
made of the Stokes–Einstein equation.2 This
approach for the prediction of the mass diffusivity
of a particle within a liquid makes use of the
Nernst–Einstein equation.3 The mobility of the parti-
cle required for the use of the Nernst–Einstein equa-
tion supposes the creeping flow predictions for
Newtonian flow about a hard rigid sphere as pro-

vided by Stokes (1850).4 Although the use of the
Stokes–Einstein equation is ubiquitous in the analy-
sis of particle diffusion in polymer solutions it is
clearly inappropriate for those situations in which
there is adsorption of the polymer on to the par-
ticles. In such situations, the particles become fuzzy
and deformable thereby rendering the use of the
creeping flow predictions somewhat questionable. It
is important to recognize that the Nernst–Einstein
equation predicts a direct linear proportionality
between the mass diffusion coefficient and the tem-
perature of the liquid suspension. The present analy-
sis is an attempt to provide more realistic diffusion
relations for spherical particles immersed in polymer
solutions.
In the previous study, the depletion of polymer

within the interfacial region results from the steric
hindrance of the configurations available to the mac-
romolecules within the confines adjacent to a sphere.
This is a passive interaction between macromolecule
and particle without any attraction. A comprehen-
sive development of the phase space kinetic theory
for polymers with a square well attraction for a solid
boundary can be found in Brunn et al.5 One effect of
an attractive force is to create an adsorbed layer
upon the boundary. Beyond the adsorption layer,
the passive wall model suffices. When the size of the
colloidal particles is smaller than that of the macro-
molecules, experimental techniques for probing the
interface become few and challenging.
A promising new technique for micro-rheology is

afforded by the use of laser tweezers as shown by
Meyer et al.6 This technique uses a colloidal probe
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particle possessing an optical index different from
the suspended particles, whose optical index must
closely match that of the solvent. Particles of a size
on the order of 100 nm can be manipulated using
the optical trap of the laser tweezers. By establishing
a uniform flow past the probe particle, fluid proper-
ties within small distances adjacent to the particles
can be examined. Since macromolecules can have a
length scale significantly greater than 100 nm, this
technique holds great promise for the investigation
of colloidal dispersions within dilute polymer
solutions.

One useful measure of the micro-structure of col-
loidal suspensions is the concept of the particles’
mean free path as indicated by Stickel et al.7 This
quantity is of a length scale, which can be probed by
the laser tweezers. Since uniform flow is equilibrium
flow, the laser tweezers can measure the mean free
path of the suspension particles or, what is essen-
tially the same thing, the root mean square (RMS)
separation distance of the colloidal particles at equi-
librium. The non-uniformity of the polymer density
and pressure fields surrounding the colloidal par-
ticles determines their RMS separation distance.
Hence, the present study uses the results found in
Grisafi (1990) to evaluate this distance and other
properties of a colloid at equilibrium.1

The pressure field surrounding a colloidal sphere
buoyant in a dilute polymer solution was found to
be transversely isotropic. There exist two distinct
components to the pressure: one perpendicular to
the surface of the sphere and one parallel to the sur-
face. The pressure is the sum of contributions from
both the polymer and the solvent. Assuming that
the colloidal particles are not so small as to be
smaller than the solvent molecules, the contribution
to the pressure from the solvent is uniform and can
be ignored.

In the analysis that follows a phase space kinetic
theory of an ensemble of spheres immersed within a
dilute polymer solution, modeled using the results
of Grisafi (1990), is used to evaluate the RMS separa-
tion distance, and other ensemble averages, for the
case in which the size of the colloidal particles is
much smaller than that of the polymer.1 Definitive
analytical results are available for this case and no
recourse to numerical methods is necessary.

DILUTE POLYMER SOLUTION

Let a be the radius of one of N identical spheres
immersed within a dilute polymer solution in which
they are neutrally buoyant. Let R0 be the end-to-end
distance of the macromolecules at equilibrium. The
polymer density and pressure fields surrounding a
sphere are given for all values of the ratio a/R0 in
Grisafi (1990).1 Let P? be the component of the pres-

sure normal to the sphere and Pk be the component
parallel to its surface. Assume that the radius of a
colloidal sphere is much smaller than the end-to-end
distance of the polymer molecules, but still larger
than the solvent molecules. Each sphere within the
suspension experiences the pressure field

P ¼ P?d?d? þ Pk ðd� d?d?Þ (1:1)

where d? indicates the unit vector normal to the
sphere and d is the unit tensor.
It is assumed that the pressure fields of the par-

ticles do not interact with one another. If r measures
distance from the center of a sphere and n1 is the
uniform bulk number density of the polymer then,
in the limit as the ratio a/R0 goes to zero, the com-
ponents of the pressure field become

lima=R0!0
P?=ðn1kBTÞ ¼ 2� ð1� a2=r2Þ3=2 (1:2)

lima=R0!0
Pjj=ðn1kBTÞ ¼ 2� 1=2ð1� a2=r2Þ1=2

� ð2þ a2=r2Þ ð1:3Þ
where kB is Boltzmann’s constant and T is the abso-
lute temperature. Here, the solvent’s contribution to
the total pressure is ignored. At the surface of the
sphere, the perpendicular component of the pressure
equals the parallel component.

DISPERSION OF SPHERES

The colloidal dispersion is modeled in the phase
space of an ensemble of N identical spheres. Let w
denote the phase space distribution (PSD) function.
The conservation of the phase space is maintained
by Liouville’s equation

@w=@t ¼ �
XN
i¼1

½@=@ri � w�ri þ @=@ _ri � w€ri� (2:1)

where t represents time and the superscript dots sig-
nify differentiation with respect to time. Only the
conditions at equilibrium are sought from eq. (2.1),
therefore, the partial derivative of the distribution
function will be set to zero.
For stationary conditions, the partial differential

equation governing w can be solved explicitly with-
out resorting to any approximate techniques such as
the method of moments. The equation must first be
fully defined through use of the peculiar velocity
field and Newton’s second law of mechanics. The
velocity ŕi of sphere i is decomposed into two parts

�ri ¼ uðriÞ þ vi (2:2)

where u(ri) is the bulk flow velocity at the location
of the sphere and vi is its peculiar velocity. Uniform
flow is invariant with respect to a Galilean
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transformation, hence, it is equivalent to equilib-
rium. In this case, the bulk flow has the form

u ¼ ud1 (2:3)

where u is a constant and d1 represents the unit vec-
tor in the flow direction. Hence, without loss of gen-
erality, the constant u may be set equal to zero.

The acceleration of any sphere i is found using
Newton’s second law

m€r0i ¼ �4pa2P � d?i
d?i

(2:4)

where m is the mass of any colloidal sphere and d?i

is the unit vector normal to sphere i. Using the
expressions for the velocity and acceleration of the
spheres in the governing equation for w yields

XN
i¼1

vi � @w=@ri � ð4pa2Þ=mP � d?i
� @w=@vi ¼ 0 (2:5)

where use has been made of the knowledge that the
peculiar velocity is a solenoidal field.

The general solution of eq. (2.5) is to be found
using the method of characteristics. Along the char-
acteristics of the differential equation, the momen-
tum of the system is a constant. The characteristics
are found to be

1=2 m vi � vi þ 4pa2
Z r

dfP?ðfÞ ¼ Ci (2:6)

where the Ci are constants. Using the expression for
P? from (1.2) to evaluate the required integration
along a characteristic yieldsZ r

dfP?ðfÞ ¼ n1kBT½2r=aþ 4a=rð1� a2=r2Þ1=2

ð1� a2=r2Þ� ð2:7Þ
The general solution to eq. (2.5) possesses only

two distinct integration constants. The solution is

w ¼ w0exp a
XN
i¼1

½4pa2n1kBT½2ri=aþ 4a=rið1� a2=r2i

 !1=2

� ð1� a2=r2i Þ� þ 1=2m vi � vi�Þ ð2:8Þ
where w0 and a are the integration constants. The
constant a is known from the Maxwellian velocity
distribution to be

a ¼ �1=ðkBTÞ (2:9)

The constant w0 will be used to normalize the
distribution.

To facilitate the calculations contract the PSD func-
tion to create the configuration space distribution
(CSD) function

/ðfrigÞ ¼
YN
i¼1

Z
d3viwðfrig; fvigÞ (2:10)

where the braces indicate the set of variables con-
tained within. With this definition, the CSD function
becomes

/ ¼ w0ðð2pkBTÞ=mÞð3NÞ=2 exp

 
�
XN
i¼1

4p a2 n1

½2 ri=aþ 4a=ri ð1� a2=r2i Þ1=2ð1� a2=r2i Þ�
!

ð2:11Þ

Define a normalization constant for the CSD such that

/0 ¼ w0ðð2pkBTÞ=mÞð3NÞ=2 (2:12)

Then the CSD function becomes

/ ¼ w0 exp

 
�
XN
i¼1

4p a2 n1 ½2 ri=a

þ 4a=ri ð1� a2=r2i Þ1=2ð1� a2=r2i Þ�
!

ð2:13Þ

with the normalization

/�1
0 ¼

YN
k¼1

4p
Z1
0

drk r
2
k exp

 
�
XN
i¼1

4p a2 n1 ½2 ri=a

þ 4a=ri ð1� a2=r2i Þ1=2ð1� a2=r2i Þ�
!

ð2:14Þ

when using spherical coordinates.

ENSEMBLE AVERAGES

Having completely defined the PSD function it can
now be used to evaluate ensemble averages of quan-
tities of interest for the system at equilibrium. As
mentioned before, the RMS separation distance is a
measurable quantity when using advanced techni-
ques such as the laser tweezers. It is defined as

d� ¼ ðhðrj � riÞ � ðrj � riÞiÞ1=2 (3:1)

where the angle brackets indicate the ensemble
average operation. Written explicitly it becomes

d� ¼ /0

XN
j¼1

YN
k¼1

4p
Z1
0

drk r
2
kðrj � riÞ2dijð1� dijÞ

2
4

� expð�b
XN
i¼1

2ri=aþ f ðriÞÞ
#1=ð2NÞ

ð3:2Þ

where dij is Kronecker’s delta. The argument of the
exponential function contains two quantities meant
to simplify the notation. First, there is the parameter
b defined as
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b ¼ 4pa2n1 (3:3)

Then, there is the function f(ri), which is defined as

f ðriÞ ¼ 4a=rið1� a2=r2i Þ1=2ð1� a2=r2i Þ (3:4)

This function was obtained from the last term on
the right side of eq. (2.7).

The required integrations for eq. (3.2) can only be
evaluated explicitly for b < < 1. This constraint is
expected to be met since the polymer solution is dilute
and the spheres are much smaller than the macromole-
cules. Integrating by parts, then retaining only the terms
containing b to the highest reciprocal order yields

d� ¼ ðp61=2Þ=ð4a2n1Þ (3:5)

This is the average distance one would expect to
find between pairs of spheres when the colloid is at
equilibrium. For the same condition of b < < 1, the
CSD normalization constant of eq. (2.14) is found to be

/0 ¼ p2Nð4a2n1Þ3N (3:6)

which normalizes the PSD as a probability
distribution.

Two other ensemble averages are of interest. The
first the author calls the peculiar acceleration, f. It is
defined analogously to the centripetal acceleration
experienced by a particle in steady rotational
motion. This ensemble average is expected to repro-
duce the magnitude of the average fluctuation
changes in the peculiar velocity due to changes in
direction. Its definition is

f ¼ hv2=ri (3:7)

Evaluating the ensemble average yields

f ¼ 8p ðkBTÞ=m a2n1 (3:8)

Last, another ensemble average which is of inter-
est possesses the units of a diffusivity. This could
only be interpreted as a mass diffusivity, and not a
kinematic viscosity, because the definition of viscos-
ity restricts its use to non-equilibrium situations. The
interpretation as a mass diffusivity must also be re-
stricted to that of a self-diffusivity. This is the case
in which the erratic path of a particle, identical to all
others, but, in some way tagged to make it observ-
able, is traced. The definition of this diffusivity is

-D ¼ ðhr2 v2iÞ1=2 (3:9)

This quantity evaluates to

-D ¼ p=ð4a2n1Þ ½ð6kBTÞ=m�1=2 (3:10)

Notice that the self-diffusivity is directly propor-
tional to the square root of the temperature.

CONCLUSIONS

The RMS separation distance of the particles in sus-
pension is found to be inversely proportional to the
concentration of the polymer solution. This predic-
tion is consistent with intuition since one would
expect that the more macromolecules there are in so-
lution the closer they will push the colloidal spheres
toward one another. The theory also predicts that
the RMS separation distance is inversely propor-
tional to the square of the radius of the colloid par-
ticles. Thus, the smaller the colloid particles are the
greater is their distance from one another. This too
is consistent with intuition.
The present study provides predictions for two

quantities that are expected to be difficult to distin-
guish from one another experimentally. The peculiar
acceleration is a measure of the collisions under-
taken by the particles while the self-diffusivity is a
measure of the random walk experienced by the
particles. The magnitude of the peculiar acceleration
is found to vary in direct linear proportion to
changes in temperature. This is identical to the
assumption of the Nernst–Einstein equation. How-
ever, the diffusivity is found to vary in direct pro-
portion to the square root of the temperature.
Intuition provides no insight into why the diffusivity
would vary with the square root while the peculiar
acceleration varies directly proportional. What is im-
portant here is the distinction between the self-diffu-
sivity and the peculiar acceleration. Until now, the
peculiar acceleration was an unknown quantity

Figure 1 Sphere buoyant in a dilute polymer solution.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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indistinguishable from the diffusivity. Yet, clearly,
there is a distinction between the progression of a
random walk and the incidence of collisions. The de-
pendence of the self-diffusivity proportional to the
square root of the temperature suggests that a parti-
cle requires higher temperatures for an equal pro-
gression of a random walk in a polymer solution
than for a random walk in a Newtonian solvent. Yet
the incidence of collisions for the particle in a poly-
mer solution would have the same linear propor-
tionality with temperature predicted for the
diffusivity of the particle in a Newtonian solvent.
Thus, it is reasonable to expect that the measure-
ment of mass diffusion coefficients for particles sus-
pended in polymer solutions would be dependent
upon the experimental technique.

The deformability of particles with a fuzzy
adsorbed polymer layer may cause the temperature
dependence of the self-diffusivity to vary neither line-
arly proportional to the temperature or to vary monot-
onically with the square root of the temperature. In
such cases one might expect local maxima and min-
ima superimposed upon a variation with the square
root of the temperature as increasing temperatures
cause varying degrees of deformability. When a cer-
tain temperature is reached such that no further defor-
mation of the adsorbed polymer layer can occur then
one might expect the monotonic variation of the self-
diffusivity with increasing temperature to resume.

Interestingly, the theory predicts no dependence
of the RMS separation distance upon the tempera-
ture of the colloid. The lack of any dependence of
the separation distance upon the temperature seems
plausible since it is the pressure field, which creates
a structure in mechanical equilibrium that deter-
mines this distance. The effect of the temperature
appears to cancel in the limit where the size of the
polymer is much greater than that of the colloidal
particles. Perhaps, if there were to be interaction
between the pressure fields of individual particles,
this prediction might be modified.

While the RMS separation distance depends only
upon the size of the colloidal particles and the poly-
mer density, the diffusivity and peculiar acceleration
depend also upon the mass of the particles as well
as the temperature. The peculiar acceleration is
inversely proportional to the mass; while the diffu-
sivity varies inversely with the square root of the
mass. Another interesting aspect to the predictions is
that the diffusivity varies in a manner similar to that
of the RMS separation distance with respect to both
the polymer density and the size of the colloidal par-
ticles. Yet, the dependence of the peculiar accelera-
tion upon these quantities is inverse to both that of
the diffusivity and the RMS separation distance. The
peculiar acceleration is enhanced by increases in
polymer concentration, but the diffusivity is
decreased. They also respond in this same manner
to changes in the size of the colloidal particles.
Detection of the variation of colloidal particle sep-

aration distances in response to changes in polymer
solution concentration ought to be accessible to ex-
perimental techniques such as the laser tweezers.
Comparison of observation with prediction will help
determine the pertinent quantities active in the inter-
facial regions of colloids. Such knowledge will then
enhance our understanding to the stability of col-
loids. Figure 1 presents an artist’s depiction of a
nanometer sphere buoyant in a dilute polymer
solution.
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